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The motivation behind this thesis is a query from AFTEC

and an interest expressed by Major Richard W. Kuip. I could

see applications in modeling 80 I thought it would be used

by others. One of my criteria for a thesis was a subject

that could be useful to the United States Air Force.

I owe Major Kulp a lot for guiding me through the basics

of Time Series Analysis since I had not had any formal

instruction in it. His encouragement and help kept me on

track. Without him this thesis would still be waiting to be

written. Thanks al so go to David R. Brillinger, even though

he does not know me; his book is invaluable. I have read at 
+

least half of it and skimmed the rest at least a dozen times.

Al so to P • R • Krt shnaiah who encouraged me when he was at

Wright-Patterson Air Force Base to give a talk on multiple

time series.

I cannot forget my wife, Connie , who kept the children

from my books and papers, fed the family on TV trays when I

took over the dining room table, helped me count failures

and passes in the simulation runs, and typed draft copies

until she knew what I was saying .

Do not blame any of the above for any errors or omis-

sions. I take full responsibility for this paper.

Anthony L. Bertapelle
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AFIT/GST/MA/79M - I

Abstract

One use of spectral analysis of time series is to

determine if two different time series are realizations from

- the same process. This thesis develops the theory behind

Krt shnaiah and Schuurmann ’ s theoretical work reported in

their report Approximations to the Distributions of the

Traces of Complex Multivariate Beta and F Matrices. We

take the trace of a test statistic calculated from the

spectral density matrices of the time series and test it.

The thesis applies the theory to two small sample simulations.
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SPECTRAL ANALYSIS OF TIME SERIES

I. Introduction

The Air Force testing and Evaluation Center (AFTEC ) at

Kirtl*~~ Air Force Base , New Mexico , has bad a requirement

in the past to compare two different time series to determine

if it can be assumed that they are realizations from the same

process. they al so foresee having the same requirement in

future tests where they will be comparing radar tracking

errors . One time series will come from a simulation model ,

the Air Force Electronic Warfare Environmental Simulation

(AF-EWES ) model developed by General Dynamics , Fort Worth ,

Texas. The second time series Will be determined from

field tests.

Each of the error series is a three variable , vector

time series . Each variable represents the error in a spe-

cific direction of a three-dimensional reference surface,

That is , one variable represent s the error in the x-direction,

another variable represents the error in the y-direction, and

the third variable represents the error in the z-direction.

This technique will, be useful in validating the results

of a simulation model with real-world data . While one can

not prove that a model is correct, one can collect evidence

I
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( data) that may support the model or show that the model does

not f i t  the data.

This thesis will descri be one use of spectral analysts

to test two hypotheses. The procedure used was developed by

P. R. Kirisbnaiah and F. J. Shuurmann. The null. hypothesis

is that the two time series being compared can be considered

realizations from the same process.

The organization of the thesis is as follows. Chapter II

reviews the notation, theory and procedure used in comparing

the time series, Chapter III contains the results of

Monte Carlo simulation while conclusions and recommendations

are in Chapter IV.

2
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II. Theory ~nd Method

Terminology and Notation

In the following we will assume that ~X (t ) ,  t=O , +1,,..}
is an r-variate Gaussian time series with E(X(t)) = Q for

all t . If E(X(t)) = ~ for all t then we always write

Y(t)  = X( t )  - ~~ t=O , ± 1,...  and the theory will hold for

Y(t). X(t) is said to be covariance stationary if for all

integers s and t,

(i). E(X(t)) = a. all t E I, the set of all integers

(ii). E(X(t) X’(s)) = j .(t,s) = E(0,s-t) =

Condition (i) says that the mean vector is constant over t~e

index set and condition (ii) says that the covariance

between observation X(s) and X(t) depends only on the dif-

+ ference between s and t and not on the values of s and t.

When we write X(t) we mean

X 1( t)

x2(t)

~ (t )  = . (1)

- 

Xr(t)

where the Xr(t) are scalar time series. Bars under capital

letters generally indicate matrices. If a matrix A has
-

~~~~~ 3
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elements a
~k 

we may indicate the matirx as Ca jk ]. i.e.,
A = [aik]. 

where ,j indicates the row position of a and k

the column, The expected value of X(t) is denoted

E(X 1(t))~
I

E(X2(t))

E(X(t)) = • = a (2)

E(Xr(t ) )
j

+ We will estimate the expected value of ~~(t )  using the

arithmetic mean,

T
~~—~~~Z X (t ) ,  (3)

t=1

where I is the number of data points in each scalar time

series.

Denoting the transpose of X(t) as X’(t) we define the

covariance matrix of X(t) and X(t + h) as

+ f’o~) = E(~ (t) X’(t + 11)) [
~~j

th)] (4)

where ~~~~~ 
a E(X~(t)  X~ (t + Ii)) • fl(h) must be abso-

lutely summable, that is,

E 
~~~~~ 

(h ) I  < for 1., j—1,...,r (5)
h— —a

4
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The sample covariance matrix will be denoted as C(h)

and defined to be

1 T-h
C(h) = £ E((~(t) - X (t ) )  (~~‘(t + h) - ~(t))) (6)
— tal

where I is the number of data points for each vector and

3~ is the estimated mean of X(t), Eq (3). Fuller states this

estimator has the smaller mean error of two biased estimators

he proposed (Ref 4z236). Jie recommends using this estimator
• + because it will ensure that the estimated covariance function

is positive definite.

To talk about the correlation matrix for a vector time

series we need to define it for a scalar time series. Let

~(h) be the autocorrelation of a stationary time series , then

p (h) = (7)

To extend to a vector time series we have

-.1 — 1
+ 

~ (h) a 
~~ ~~(h)~~ (8)

where is a diagonal matrix with the square root of the

variances of Xr(t) as the diagonal elements. ~~2 — (diag

~~ii(°)~ ~22(0),.1~ , ~~~~~~~ 
We will write the tjth element

+ of ~(h) as oij(h) and call it the cross correlation between

X~(t) and X~(t).

H ~-

I - - - -  .-• —
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Theory

The theory used in this thesis will draw on termi-

nology and notations defined in the previous section. As

other terms are needed they will, be defined. Proofs will

not be given ; the reader may find the proof or a discussion

of the proof in the references. The procedure we will be

using involves the calculation of a Fourier transform on the

covariance matrix. Fuller uses two theorems to state a spe-

• ctal case of the Fourier integral theorem (Ref 4*107-109 and

110-111). The theorems follow another theorem he presents

that we need (Ref 4*106) .

Theorem is

Let 1(x) be an absolutely integrable function of period

2i,. Then,

(i) At a point of continuity where 1(x) has a
right derivative and a left derivative,

f(x )  - + E ( a k cos + b1( sin 1(x);

(ii) At every point of discontinuity where 1(x)
has a right and a lef t derivative,

a +~-2- + E ( a k cos kX + b k stn k X )~~ 
X J

In this theorem the Fourier coefficients, a.~ and b~ are

defined as follows (Ref 4 *95-96).

6

4

~~+1 c .½

— —



— _—~ - - r .T~ -~+~_ + _ + ’-,- - - -—----- - - -  — ~~ - — -+ - —  - —+ — — • •-

h
Let L[A] a largest integer ~ then for L~ 

2
~N 

m

m a 0, 1, 2 , . . . , L[N] we have

N-i
2 E  f(t) cos L’ t

• am a t—O 
N 

m 
m — 1,2,..., LEN-i]

- N-i
E f ( t )  cos L/m tt—O

N m - O a n d

m —~~~tf N is even

• and
• N-i

2 E f(t) sinLl t

bm 
t—O 

N for m — 1,2 ,.. . ,  L[N-t]

Theorem 2*
Let f(x) be a continuous periodic function of period

2rr with derivative f’(x) that is square integrable.

Then the Fourier series of f(x) coverges to f(x)

absolutely and uniformly.

theorem 3*

Let the correlation function p(h) of a stationary time

series be absolutely summable. Then there exists a

continuous function f(L/ ) such that s

TV

t (i) p(h) — S 1(L) ) cosL’h dL’

(ii) 1( L)) ~ 0

+ -- 

~

L. -— ::i:i: -- ~~~~~~~~ - - 
~~

- - 
~~~~~~~~~~~~~~~~~~~~~~~~ — - ~~~~~~~~~~~~~ — • ---—--- 

- +
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TV
(iii) .1 f( ....i)  dL’ — 1

-If

(iv) 1(L)) is an even function.

Theorem 2 states that a sequence of Fourier coefficients for

a continuous periodic function with a derivative that is
square integrable can be used to build a sequence of functions

that coverges to the original function. The argument that

follows is from Fuller (Ref 4*115-116). The result of

Theorem 2 can be restated compactly by substituting the

definitions of ak and bk
. into the statement of Theorem 1 and

getting

• 
1(x) ~~ Z e~~’~~ 

~~~~~ 

1 (L) )  et
~~~ dLJ (9)

The reciprocal relationships are well def ined and we can
write Eq (9) in terms of Theorem 3.

— ~~~~~ Z ~(h) e ’t
~~’~ d~ i (10)

We call 
~
(k) and 1(x) a transform pair.

We will call the transform with the constant and the

negative exponential the Fourier transform or spectral

density. The 1(L)) mentioned in Theorem 3 defined by

— ~(h) e U1h (11)
h -os

8
-

~ 
I

. - . - •

~~~

‘ 
• 

~~~~~~

- -

~

- --— -

• 
•
~ ~~~~ -~

-
~
- •~ ~~~~~~~~~~~~~~ 
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is the Fourier transform of 0(h) . We can also say that it

is the spectral density associated with 0(h). The second

• transform in Eq (10) consists of the constant and the

positive exponential and is called the inverse transform or

characteristic function. We can write

- TV

~(h) — 4’ f(~ ,,)  e~~ dL’ ( 12)

:1 We have seen that if we have a correlation function

for a time series we c-an get a spectral density, and that

if we have a spectral density we can find a correlation

f unction that is the inverse transform of the spectral

density. We can extend thi s discussion to the covariance

function since the covariance function is the correlation

function times the variance of the process. We will , again ,

follow Fuller ’s discussion (Ref 4*126-127). First, ~(h) can

be expressed in a Lebesgue-Stieljes integral form as

TV
p (h) — 4’ e~~ 1h dG( L/ ) (13)

• -if

where G(Lj) is a statistical distribution function. If we

- multiply p(h) by the variance of the process we can get the

covariance function

• 

TV
y(h) — ,~

‘ e~ 
h dF(L’) (14)

-If

---4 

- ‘- 
$

_
~~~ - I

V • r ~~•~~~ -
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~: ~~~~~~~ ~~~~~~
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where dF(Li) — y(O) dG(L/) . Both G(L/) and F(L/) have

been called the spectral distribution function.

Now, assume y(h) is absolutely sumniable, as in Eq (5).

By Theorem 3 we can define f( LI) by

00

1 ( U)  — £ y(h) e~~
L

~h
ha.os

— -
~~ E ~(h) cosLlh (15)

H which is a continuous nonnegative even function and the

inverse transformation is

if
• y (h )  — 4’ f(U) e~~

1
~ dL/ (16)

-if

and when we compare Eqs (16) and (14) we can say dF(L/) —

1(L) ) dLI and f(LI) is the spectral density function

defined in Eq (11).

The discussion so far has been in terms of scalar tine

series. The spectral representations of vector time series

follows in a straightforward manner. Again our discussion

is from Fuller (Ref 4*153-154).

Recall that Eq (4) stated that

f oi) — Cy
~ 

(h )]

and assume that [yj~ 
(h)] is absolutely summable as defined

10

• ~~~,+ - 
•

V
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in Eq (5). Then,

f ( L i)  • - ~ - E  y (Ii )  ~~~~~ (17)
jID ~ h -os JUL

is a continuous periodic function of L/ called the cross-

spectral function of X~(t) arid X~
(t), for -os < LI < and

j , m — 1, . . . , r.

If we let F(Li) be the spectral density matrix with a

typical element represented by I j~
(L/ ) .  we can use the fol-

lowing matrix representation

~~~~~ ~ (L ) )  dU (18)

• and

F( L’) - 21 z ~~~~~ £(h) (19)
‘~ h—-os

Let us look at some properties of Eq (17) following

Brillinger’s di3cussion (Ref 2*23-25). The requirement that

• CYjm(h1)] is absolutely sunimable says that I j~
(L / )  is bounded

and uniformly continuous. If the components of ~~(t)  are real-

- valued then

- — — 1mj~~~’~ f~~(L)) 
- (20)

V 
where indicates the complex conjugate of f~~. We can

al so see that I j~
(L/ )  has a period of 2w with respect to Li

11

I
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since f~~(~~) — f~~(~~
j + 2ff). If j — ni then we call

the power spectrum of the time series X~(t) at the frequency

L/. If J ~ in then f j~~(L ’ ) is called the cross spectrum of

the time series X ( t )  with the time series X (t) at the fre-

quency Li.

To look at some properties of the spectral density matrix

(Eq (19)) we need to look at two definitions from Fuller

(Ref 4*154). First, a square complex valued matrix ~ is
- 

- called a Hermitian matrix if it is equal to its conjugate

transpose ; i.e. ,

where the jmth element of B* is the complex conjugate of

b
~j~ 

the ~j
th element of B.

The second definition is that a Hermitian matrix B,

is positive definite if for any complex vector ! such that
*v w > 0,

*! ~~~~~~~~~

and it is positive semidefinite if

- 
• 

w* B w > 0 .

Brillinger calls positive semidefinite non-negative definite.

We will use Fuller’s version of the following theorem

• (Ref 4*155) because Fuller has a proof , even though Brillin-

ger al so states it (Ref 2 *24).

12
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Theorem 4*
For a stationary time series of dimension r satisfying

00

£ 00

ha-os -~

- 

for j, in 1, 2, . . . , r, the matrix F(Li) is a

- positive semidefinite Hermitian matrix for all Li in

[-TV , i f] .

Theorem 4 tells us that ~*(L / )  ~~ (L / )~ Combining
Theorem 4 and the properties of symmetry and periodicity

that we have discussed above indicate that the domain of Li

may be restricted to the interval [0 , w].

Now that we have looked at the spectral density matrix

and its properties we need to look at how to estimate it with

the realization of a time series we are working with. We

will estimate f,~ with a second-order periodogram,

defined to be (Ref 2*120, 235)

• T 2
— (2w1)4 £ X 4(t) et~~ (21)

t 1  -‘
V 

where I is the number of data points in X~(t). Expanding

to the case of a vector time series we have

+ I U) a (2i~T~~~~ X ( c)  e~~~t)(~ X (t)e~~~t) (22)jm t—1 t—1 ~

13
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for ~. ~ 0, ±2If, . . . . We can also represent the periodo-
gram as a matrix

— [i~~U)] 
(23)

or

*4 1 T I
IU) a (2nTY £ X(t) e £ X(t) e (24)

t=1 t—1

-~~ for j, m a l , . . . , rand - os <~~~< o s. It can be seen that

IU) has the same properties of symmetry and periodicity as

E( Li) .  The distribution of ~ is an important item to con-

sider; it is given in the next theorem by Brillinger

(Ref 2*238).

Theorem 5* -

V Let X(t), t — 0, ±1, . . . be an r vector-valued series

satisfying Eq (5). Let IU) be defined as in Eq (24).
Let Sj(I) be an integer with ~.~ (T) a 2 s~(T)/I tending

+ 

to as T —s 00 for i — 1, . . . J. Suppose

• 2 ~~(i)~ i~ (t) ± ~~~T) ~ 0(mod 2ff) for 1 ~ j < k U

and I sufficiently large. Then IU~(T)). j 
a •. .~~ J

• are asymptotically independent W~. (1, ~~~~~~~
j a 1, . . . , J. Also if ). — +w, +3tr, . . . ,

V is asymptotically Wr (1, ~(~J) independently of the
previous variates.

• As a note, the notation W~, (dl, F(Li)) indicates a central

14
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complex Wishart distribution of dimension r and dl degrees

of freedom with a covariance matrix of F(Li). The Wr without

the superscript C indicates a Wishart distribution of dimen-

4 sian r. Note that Wr is a special case of . 

+

An important outcome of thi s theorem is tha • en

= X , we have a source for J asymptotically independent

estimates of FU) . The theorem al so points out a limitation

of using Eq (24) as estimate. With one degree of freedom,

the Wishart distribution is well spread out about F(~).

Brillinger (Ref 2. 240) arrives at the conclusion “that second-

order periodograms were not reasonable estimates of second

order spectra.” The main reason is that 
~ 
is not consistent,

that is. the estimate does not improve as T gets larger. We

can increase the degrees of freedom of the complex Wishart

distribution by averaging a certain number of asymptotically

independent variates together. The higher degrees of freedom

would lessen the spread of the distribution around EU) .

This idea leads us to the smoothed periodogram which we will

discuss next.

Krishnaiah (Ref 6 *20) recommends the following estimate

for F(Li)

(25 )

A
I 1k(L

~ 
— £ Wa 1

~ k Li + (26)
-‘ a——rn

15
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with

(27)

z~(A ) Z~ (X ) (28 )

arid

Z (A) = 1/(2ifT) £ X (t) e Lit (29)
t=1

V where Wa are weights wbose sum equal s one and I is the

number of data points in the scalar time series X~(t). In

-• 
this representation Ijk(A) is a second order periodogram and

is the average of (2m + 1) periodograms and is called

V 
the smoothed periodogram.

Brillinger (Ref 2.242-3) recommends the following esti-

mates with 11(Li) given as thus

I
IT (LJ ) = (2wIY £ X(t) e E ~( t) e (30)

t—1 t 1

— z z ~ 
- (31)

• which is the same as Krishnajah. However, Brillinger gives

three estimates for ~ ( L / )  depending on the value of (L/ ) .

- (2m + 1)~ 1 ~ t (2w[e(T) + a] ( 32)
a--rn 

V

V if Li ~ 0(mociw )

16
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A In
F(LJ ) = m ’ E Real I ~j  + (33)

a=i +

if ~~‘ = 0 , ±2if , . . . , or if
- 1 Li = ±~. ~~~ 

. . . and T is even

~(L/ )  = m~~ ~ Real(I(L/ - + (34)

if U = +,r , +3iv, . . . and I is odd

where 2ff s(T)/T L/ as T — oo . These estimates have the

same properties of symmetry and periodicity as F( L’) in

Eq (19). This estimate is asymptotically unbiased as m di-

cated in this theorem from Brillinger (Ref 2.244).

Theorem 6*
Let X(t), t = 0 , ±1 , . . . be an r vector-valued series
with mean function a and cross-variance function E(h)

defined in Eq (4). Suppose E h  is absolutely summable

as defined in Eq (5). Let ~(Li) be given by Eqs (32),

(33) and (34) and if 2rrs(I)/T — ~j  as I — 00 then

lim
I 00 E(F(L’)) = E(CJ) for -00 < L/ < 0 0

Once we have an estimate of F(L’) we need to look at its

distribution. Again Brillinger (Ref 2.245) gives us a thea-
V 

rem on the distribution of

17
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Theorem 7:

Let X(t), t = 0, ±1, . . . be an r vector-valued series
satisfying Eq (5) .  Let F(Li) be given by Eqs (32),

-
~ 

(33), and (34) with 2ifs(T)/T Li as T — oo~ Then

F~( L i)  is asymptotically distributed as (2m + 1Y 1 
~

(2m + 1, F(L~’)) if LI ~ O(modiy) and as (ZmY
1 Wr

(2m, E( L J ) )  if Li O(modn). Also ~(L/j), j = 1,..., J

are asymptotically independent if ~4j ±A~ ~ O(mod 2ir) for
l U j < kU J .

Thus our current estimators are “better” (relatively speaking)

than a non-smoothed pertodograin.

In Chapter III, we will discuss how we tested this pro-

cedure. At this time we will look at a theoretical calcu-

V lation of a spectral density matrix and a confidence interval

on the estimated spectral density matrix. Our vector time
series are three first order autoregressive (AR(1)) scalar sta-

tionary time series with the covartance between any two zero

so we can look at each scalar time series separately. Fuller

develops the theoretical spectral density for this process

(Ref 4.143-144). First, we need a theorem about the spectral

density matrix of this particular process.

Theorem 8 (Ref 4,140-14 1).

Let X(t) be a stationary time series with an absolutely
00

suinmable covariance function and let (a 4 ) be
+ J j =_0I,

absolutely summRble. Then the spectral density of

_ _ _ _ _ _ _ _ _ _ _ _ _  

_  

j
L +~~~~~~~~



- -5----- V _

00

Y(t) = E  a4X is
j

f~(Ui ) = (2rr)2 f ( (j )  
~~~~~~ 

f(L~) ( 35)

where 
~~ 

i )  is the spectral density of X(t),

— (2tvY1 E a. ~~~~~ (36 )
3

is the Fourier transform of aj. and

• 

- 

f (L/) a (2~v)4 Z a~ e~~~
i (37)

is the complex conjugate of the Fourier transform

of a

• For this development we follow Fuller (Ref 4.143-144).

A first order autoregressive process can be written as

X(t) E e (38)
j—O

By Theorem 8 the transform of the weights aj p
~ 

is given
V 

- byEq (35)

g (~j)  1 £ o~~ 
e t

~~~

1 00 iL/ i
~~~Z (pe )

19
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1 1
= 

~~~~ 1 - o exp(-i~j)

and its complex conjugate is, from Eq (37),

a i... (~ i eiiL.1)

1 1
~~~~ 1 - p exp(iL’)

Hence, also by Theorem 8 (Eq (35)) we have

- (2~)2 f ( ~~)g (Li) g (L/)

• 1 1— 
~~~~ 1 - o exp( -iLj J 1 - 

~~ exp(iLi)

(39)

since f5(Ui) is the spectral density of the uncorrelated

sequence £e
~
) and equals a2/2rr for all L/.

To get an approximate (1 - ~
) significance level con-

fidence interval we will again use Fuller’s estimate. Fuller

summarizes a long discussion (Ref 4.287-295) into the fol- 
V

lowing resul t (Ref 4 .296) which we will use. We let X (t )  be

an autoregressive of order 1 that can be represented as an

+ I infinite moving average of the form

00

X (t)=E ~x4 e
+ .1—0 ~

20
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where aj a p
~ 

and the et are independent (0, a2) random

+ variables and let f( Li’) > 0. Then, for < Li < ir( 1 - ~)
we have (f4( ~~) 

~(Li)) is approximately distributed as a

chi-square random variable divided by its degrees of

j . freedom v , where

in -1
-
~ 

- v — 2 £ w2(j )  (40 )
-
~~ i—-rn

arid where 2 (LJ ) is the smoothed periodograin, the average of
(2m + 1) periodograms; w ( j )  is a weight such that

• in
E w(j )  1 (41)

‘
I 

i—-rn

w(j) = w(-j) (42)

We can construct the (1 - a) level confidence interval for

f (L / )  to be

s 1 ( U)  U ~ 2~~ (43)
v , a/2 v , 1 - (a/2)

where X~ a/2 is the a/2 tabular value for the chi-square
• 

+ distribution with v degrees of freedom.

This estimator is for the diagonal elements of the

• spectral density matrix. For the cross spectral elements
we can find a confidence interval for the amplitude of the

- 
spectrum (Ref 4:156, 314-317). Let the cross spectral

• 21
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estimate be represented as

~ jk = Cjk + ~. ~ jk (44)

then the amplitude of 1jk’ Ajk. can be estimated by

A jk = + ~ j k )  (45)

Fuller does not state a theorem but he says that we can

assume and to be normally distributed (Ref 4.316-317).

With this assumption we can get an upper and lower bound

V on U k.

The upper bound can be calculated as

+ [(2m+I)~~1 2~~ (L i )  ?~~~ L / )  F~m(a)]
½

(46 )

and

½• A
~k

(L/) a max~O , AJk ( CJ)  - [(2m+1Y 1 fjj(Li)F~~
(L.J)F

~m
(a)]

¶ wI~tere

- ~~~~ - K~~ (Li) ) ( 2 m + 1 )

— ~ +1k~~
’
~~~ a k~~~

’
~ 

+ q 1~ ( L1)

I 
jk I~ ( u)  f~~(U )  f~~(LJ) f~~(LJ )

22
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and where 
~~~ 

is Snedecor’s F with 2 and 4.n degrees of

freedom. Hence, combining Eqs (46) and (47) we have

~ A( LJ) U A
~k
(LJ) (48)

V 

Note that A
~k 

- A~~, 
and A

~k 
= 4.1.

The Test

This completes the theory we need to get into the pro-

cedure we will be using. As stated earlier, our procedure

is based on the work of P. R. Krishnaiah and F. J. Schuurmann.

Since we will be accomplishing two tests, a Beta test and an

F test, we will be discussing two test statistics. We will

• look at the test statistics first. Kirshnaiah and Shuurmarin

state

Let 
~i 

and S2 be distributed independently as
central complex Wishart matrices with m and n degrees
of freedom, respectively, and let E(S1/m) = E(S2/n) —
where I~, is the identity matrix. Then, Si( Si +
is known to be a centr~l complex multivariate betamatrix, whereas S1 S2~ is known to be a central complex
multivariate F matrix (Ref 7:2).

Let (X(t), t = 0, 1, . . . ) and (1(t), t a 0 , 1, . . . )

be r-variate Gaussian time series with E(~(t)) — Q and

E(Y(t)) = 0 for all t and let X(t) and Y(t) be covariance

stationary with the elements of their respective covariance

• matrices absolutely summable. Let ~( L i)  be the spectral

density matrix of X(t) multiplied by its degrees of freedom

and G(L J ) be the spectral density matrix of 1(t) multiplied

by its degrees of freedom.
V 23
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The null hypothesis, H, of the test is that F(Li~)

• = G( L.J2) for 2 = 1, 2, . . . , q, while the alternative

hypothesis is that F(L12) # G( L12 ) for 2 a 1, 2, . . . , q.

We will be looking at two different tests, a Beta test and

an F test. We will talk about them in parallel but not as

one over the second. We will accept H if the Beta test

statistic

trE~ ( Li2 )(~ ( Li2 ) + ~ (L i2 ))~~ ] U a~

where tr means trace and aa is the table value described

below. Similarly we accept H if the F test statistic

U b (50 )

where b is the table value described below. We do not

require that both tests pass to accept H. We only require

that the test we are looking at pass.

The table value aa is the upper percentage point of

the distribution of the trace of the complex multivariate

beta matrix where a indicates the probability of making a

type 1 error. These values are found in (Ref 7:12-63). The

table value ba is the upper percentage point of the distri-

+ button of the trace of the complex mu].tivariate F matrix,

with a. again, indicating the probability of making a type 1

V 
error. These values are also found in (Ref 6 :64-99). The

24
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a
a and ba are chosen such that

1~ P[trth(L1)(~ (LI2) + G(LJ2)Y~} U a (H] = (1 - a) (51)
2l a

and

- P[tr(~(L/2) G(L/2Y
1) U baIH] = (1 - a) (52)

2=1

Our discussion has been for a one-tail test. If you want to

accomplish a two-tail test just replace alpha by (a/2) in

Eqs (51) and (52).

En this chapter we have looked at the notation and

terminology we used and we took a brief look at the theory

of using the frequency domain to analyze time series. We

then discussed the procedure and the test statistics we used.

• In the next chapter we will discuss the simulations we did

and the results we got from them.

V
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III. Monte Carlo Simulations

This chapter discusses the Monte Carlo simulations

accomplished to test the procedure against randomly generated

time series. As stated in Chapter II , the scalar time series
are first order autoregressive stationary time series of the

form

Xr(t) — e(t) tal

Xr(t) = px.Xr(t~1) + e(t) t—2,..., I (53)

where T is the number of data points. The e(t) are normal

(0 ,1) random deviates for t=2,..,, T. For t 1  e(t) was

adjusted to incorporate the effects of the terms between

and 0 which ensures that the process is stationary. The

absolute value of each was les8 than one. The e(t)

sequences were calculated as follows. Using the International

Mathematical arid Statistical Libraries, Inc. (L~SL) routine

GGUB , we obtained a sequence of uniform (0,1) deviates
(Ref ZsGGUB-1). The deviates were converted to normal (0,1)
deviates by using the Box-Mueller technique. Three scalar

time series were generated using this procedure to form one
• 

~(t). The cross covariance between X~ ( t) and X
~
(t) is zero

for j ~ in so X(t) is a stationary vector time series.

26
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The spectral density matrix was calculated and both

test statistics were calculated. The test of hypothesis

used was a two-tail test at four different alpha values,

0.2, 0.1, 0.05, and 0.02. In the first two simulations we

calculated the test statistic (using the notation of the

procedure discussion in Chapter II) as

+ ~C-.J 2 ) ] ~~ i = .rg
~ (54 )

V 
and

tr(a( Li
2

)[
~~~~( 

~
‘2~ 

+ ~~~ ...J 2)]
1) — TR2 (55)

• for the Beta test and as

~‘[~( Li )(~( Li2 )) 4] = 1R3 (56)

• and

trC~ ( --“
~~~~~~

—
~ ~~~~~~~~ 

= 1R4 (57)

for the F test.

For both tests we took the greater of TR1 and 1R2 and the

greater of TR3 and TR4 and tested against the respective
• A A

table values. F and ~ were written using Brillinger’s

• estimates, Eqs (32), (33), and (34) from Chapter II.

In all simulations, the number of data points, I, was

200. We restricted I to be even so we did not use Eq (33).

We also set 8(1) in Eq (32) to vary from 0 to 100 in intervals

27
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of 10. This allowed us to look at eleven frequencies

between zero and n, inclusively. The frequencies are

IT/i0 apart .

The analysis can be accomplished two ways. First,

using the criteria that all frequencies pass the test or

using a binomial, distribution. A confidence interval was

determined from a table of confidence intervals for pro- +

• ,

portions. We did this because we are looking at failures or +

successes, a zero-one test. The alpha is the probability of

failure for simulation I, at a specific frequency.

h Before we look at the results of the simulations and

analyze them, a couple points need to be emphasized. The H

sample size of each simulation is small. The first two only

consist of a hundred runs each, when they should be at least

1,000 to 5,000 each. The third simulation was done with

12 runs which seems to be adequate as we will point out

later. With this in mind we can still make inferences about

the results, though.

The runs were limited because the program took a long

time to run, about 94 seconds for each run. This length of

time lowered the priority, which was already low so turn 
V

around time was long. A normal sample of 25 runs, at the

minimum had an overnight turn around, though the usual was

two to three days. Programs which ran only one run had an

average turn around time of three hours. A second limiting

factor was budget limitations. A final point we wish to

28
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emphasize is that all the data is simulated. We were unable

to receive actual data. This makes the analysis aestheti-

cally less satisfying.

Keeping the limited number of runs in mind we will look

at the first simulation. This simulation simulated two time

series with equal respective rho values. The values used

were -0.7, 0.3, and 0.8. Figure 1 shows the theoretical

+ spectral density matrix for these two time series, based on

Eq (39) with a2 = 1.

f (Li) = 2H x Z I T ( l + Q  - 2 p cosLi)

In testing these two time series the values of IR1 from

Eq (54) and TR2 from (55) should be 1.5 for all frequencies.

The values of TR3 and TR4 from Eqs (56) and (57) should

be 3.0 for all frequencies.
V 

The results of this simulation are interesting. Table I

shows the results at each of the alpha values for the Beta

test. Table II has the same information for the F test.

Both tables show that the number of failures at two fre-

quencies, zero and IT , are extremely high. We cannot explain

this. The other frequencies include their respective alpha

within their 957. confidence interval (see Ref 1:220).

Table LII shows the number of runs which failed exactly at

the number of indicated failures • These can be compared with

a binomial distribution (Ref 1:184) and the comparison shows

29
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V

L i = O
V r

0.0551 0 0
0 0.3248 0
0 0 3.9789

Li .
iç~

[0.1068 0 0
1 0 0.1460 0

L 0 0 0.970

tJ ly

[1.7684 0 0
0 0.0942 0• [ 0 0 0.0491

Figure 1. Theoretical Spectral Density Matrix, Simulation I
(Selected Frequencies)

- the same structure even though the table values do not match~

A simulation of 1,000 or more runs should show the values

converging to the table values for the binomial distribution.

There are two ways to interpret this data. From our

discussion of the procedure in Chapter II we can require all

tests to pass. The alpha for each test must be small to get

V a larger simultaneous alpha value. For example, when each

run is tested with an alpha of 0.02 we see that 32 percent

of the runs failed so the empirical al pha is 32 percent for 
+

this test.

30
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Table I

Number of Failures
Beta Test, Simulation I

Frequency

IT IT 3W 2IT IT 3iy lIT 1ê-1T 9vr
• Alpha 0 

~~~ ~~~~~~~~~~~~~~

-

~~

- 

~ T T ~~~~5 T U  IT

0.2 36 16 24 17 23 14 20 14 24 17 39

0.1 27 9 15 7 9 9 12 9 15 10 33

0.05 19 6 8 2 2 7 4 2 10 5 24

0.02 10 3 4 - 0  1 2 2 0 3 2 1 2

F Table II

Number of Failures
F Test, Simulation I

Frequency

IT IT 3W 2IT IT 3W 7IT 4-i’r 9i~Alpha 0 r~ 3 ~~~~~~~~~~~~~~

-

~~

- 

~ ~~~~~~~~~~~~~~~~~~~~~~~ 
IT

0.2 78 19 26 14 17 23 20 15 25 17 77

0.1 62 13 14 7 8 10 10 5 15 6 65
+ 

0.05 50 6 9 4 3 4 8 3 9 3 59

0.02 39 0 3 1 0 2 4 0 2 3 44
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An alternative method is to use the Bernoulli trial

concept for independent trials and use a decision rule

based on allowing a certain number of failures. In this

- 
method we set the simultaneous alpha based on the cumulative

binomial distribution function. Table III and the binomial

distribution show that we can expect some frequencies to

fail even when the two time series are generated by the same

process. Using Table III and the cumulative binomial distri-

bution table (Ref 1:196), we determined the following

-
~ decision rules, one for each alpha. At a = 0.02 , if the

number of frequencies that fail is 4 or more, then the test

H fails and the null hypothesis is rejected. At a = 0.05 ,

the cut-off is 3 or more frequencies. At a = 0.1 , the

cut-off is also 3 or more, at a = 0.2 , 4 or more frequencies.

These cut-off values give a simultaneous alpha value different

than the one being considered for each test. The value for

the alpha of 0.02 was determined from Table III. For the

• Beta test the alpha would be about .01 and for the F test

it would be .04. For the other cut-off values the true

alpha would be 0.02, 0.09, and 0.16 for 0.05, 0.1 and 0.2

respectively. Table IV summarizes the cut-off values and

the upper percentage points we used in the test.

An important parameter in considering cut-off values

is the number of frequencies looked at. This analysis is

for eleven frequencies. A different number of frequencies

would require a different cut-off value. The analyst should
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Table IV

Test Cut-Off Values and Upper Percentage
Points Used With Eqs (49) and (50)

Cut- aa aa bu ba
Alpha off .i~~~0 Li~~~0 ~~~~~ L.J *0

Value (modn) (mod,,) (modn) (mod,y) - -

0.20 4 1.715 1.705 5.516 5.299

0.10 3 1.77 1.763 6.173 5.889

0.05 3 1.823 1.813 6.83 6.474

0.02 4 1.88 1.870 7.72 7.256

use a cumulative distribution table and choose the value such

that the probability of X or more failures is the value of
V 

the alpha level he requires. An alternative procedure

requiring more calculations is to use Bonferront’s inequal-

ity (Ref 3:100).

The second simulation used one time series with the

same parameters as the first simulation. The first time

series has rho values of 0.2, -0.5, and -0.9. It was felt

that these rho values were far enough apart from the rho
V values for the other time series to ensure that the null.

hypothesis would be rejected. When the theoretical spectral

density matrix for the different time series was calculated

(see Figure 2) and the test statistics were calculated using

Eqs (54), (55), (56), and (57), a surprising thing was noted.

Some of the frequencies would pass the test of hypothesis
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0.2487 0 0
0 0.0707 0
0 0 0.44 1~~

0.1530 0 0 1
0 0.1273 0
0 0 0.0879~J

+ 

0.1105 0 o~~i
- 

0 0.6366 0
0 0 15.9155]

Figure 2. Theoretical Spectral Density Matrix for First
Time Series, Simulation II (Seletted Frequencies)

as being equal. Table V shows the traces calculated by

Eqs (54) and (55) for the Beta test. At L.~—4 through L19,
depending on the level of confidence, we expect these fre-

quencies to not reject the null hypothesis. Similarly,

Table VI shows the same type of information for the F test.

The simulation agreed with this theoretical analysis.

• Table VII shows, for the Beta test, the number of failures

• for each of the alpha. we looked at and Table VIII shows the

same information for the F test. In Table VII , the alpha

characters below the numbers indicate whether or not that

- I 35
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Table V

Theoretical Traces for Beta Test, Simulation II

TR1 TR2 a at which test passes 
V

1 1.0151 1.9916 Fail

2 1.0340 1.9677 Fail

3 1.1078 
- 

1.8922 Fail

4 1.2243 1.7757 0.05

5 1.3709 1.6291 0.20

6 1.5301 1.4699 0.20

7 1.6814 1.3186 0.2

+ 8 1.8030 1.197 0.05

9 1.8618 1.1185 0.02

10 1.9178 1.0823 Fail

11 1.9262 1.0731 Fail
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Table VI

Theoretical Traces for F Test, Simulation II

- H. TR3 1R4 a at which test passes

1 4. 7424 95.0400 Fail

~1 2 4.548 34.2282 Fail

1 3 4.0596 13. 1404 Fail

4 3.5201 6.9400 0.02

1 
5 3. 1627 4.26 34 0.2 

V

-: 6 2.4260 2. 9484 0.2

7 3.9651 2.4260 0.2

8 6.1311 2.6625 0.05

9 12.1361 4.162 Fail

10 37.8965 9. 1714 Fail

11 330.8203 16.1548 Fail

i V t .~ 
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Table VII

Number of Failures
Beta Test, Simulation II - 

V

Frequency

0 iT IT 3W 2ir iT 3W 71T 41T 91rAlpha 
~ 3 ~~~~~~ 

I! +

0.20 95 100 98 60 16 17 34 73 94 100 95

F F F F  P P P F F F F

0.10 87 96 89 49 7 8 24 59 86 95 93

F F F F P P P F F F F

0.05 78 92 78 30 4 3 12 42 67 91 85

F F F P P P P P F F F

0.02 63 79 51 14 0 2 7 29 43 70 62

F F F P P P P P P F F

NOTE : F - Frequency theoretically Failed
P Frequency theoretically Passed
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Table VIII 
+

V Number of Failures
F Test, Simulation II

• Frequency

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0.20 100 100 100 98 54 26 33 93 100 100 100

F F F F  P P P F F F F

0.10 100 100 100 89 32 13 22 82 100 100 100

F F F F P P P F F F F
005 100 100 100 83 20 5 14 76 100 100 100

F F F F P P P P F F F
0.02 100 100 99 73 12 2 6 63 99 100 100

F F F P P P P P F F F

NOTE: F = Frequency theoretically Failed
P = Frequency theoretically Passed
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that frequency was supposed to pass. In this test each - alpha

had at least one frequency where the number of failures did

not have the alpha value in its 95 percent confidence inter-

val. Omega of 3ir/5 failed more times than expected , except

for alpha equal to 0.05 the number of failures did not

include the alpha level in a 99 percent confidence interval.

Only two omega values passed as expected, they are omega

4 2rT/S and n/2. Again, we do not have a reason for this, how-

ever, a simulation of a larger number of runs may help to

bring the values down.

Table VIII shows a similar structure for the F test

results. Only omega rr/2 shows values that include the alpha

in a 95 percent or 99 percent confidence interval. Al]. the

other frequencies that passed do riot. Again, we do not have

a reason for this, other than this is a result of the small

sample size.

Table IX shows the number of runs which had the indi-

cated number of failures. Using the binomial distribution

decision criteria developed for simulation I (Table IV), we

would reject the null hypothesis that these two time series
V 

came from the same process. The only problem is at alpha

equal to 0.02 where 13 runs passed with less than four Ire-

quency failures.

The first two simulations show that we can accept or

reject the null hypothesis for simulated time series. The

+ problem that was mentioned during the discussion of

40
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simulation I caused us to question the estimator for Li = 0

and L1 = IT, Eq (33). To look at the estimators we accom-

plished simulation III to calculate the spectral density

matrix of a time series. The rho values we chose were the

same as the ones for simulation I which were -0.7, 0.3, and

0.8. After averaging 12 time series, the difference between

the average of 10 and 12 time series was only in the third

decimal place, so we can assume the process has settled

down and that a sample size of 12 i. adequate for this

analysis.

Terms on the order of magnitude of iO~~~ or less have

been set to zero because is the round-off error for the

CDC 6600 computer the simulation was run on. A 95 percent

confidence interval using Eq (43) for the diagonal elements

and Eq (48) for the off diagonal elements. Figure 3 shows

the spectral density matrix for the three values of omega

and Figure 4 shows the 95 percent confidence interval for
these values. The values in Figure 1 are included in the 95

percent confidence intervals for the estimates.

Note that the actual values for omega equal to zero

and IT are within the 95 percent confidence interval for the

estimates. This, then, cannot explain the bad results we had

at those frequencies.

Hence , we are reasonably sure that our estimates are
estimating the actual. spectral density matrix. We can also

conclude that the results of simulations I and II are feasi-

ble, keeping in mind the small sample size.
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( 0.0591 , 0 ) (0,0116 , 0.0129) (-0.0072 , 0.0130)

• ( 0.0116 ,-O.0129) (0.3220, 0 ) ( 0.0866, 0.0179)

• (-0.0072 ,-O.0130) (0.0866,-0.0179) ( 3.1059, 0 )

L/SIT/2

( 0.1180 , 0 ) (-0 0022,-0,0016) ( O.0001,-O.0031)
I (-0,0022 , 0.0016) ( 0.1403, 0 ) ( O.0022,-0.0O10)

H ( 0.0001 , 0.0031) ( 0.0022, 0.0010) ( 0.1067, 0 )

1.5456 , 0 ) (-0.0113 , 0 ) (-0.0119 , 0
- t (-0.0113 , 0 ) ( 0.1119, 0 ) (-0,0003 , 0 )

~I L _0.0119 , 0 - ) (-0.0003 , 0 ) ( 0.0451, 0 )j~

NOTE: Each number is a complex number where (a ,b) means
a + b i .

Figure 3. Spectra]. Density Matrix, Simulation III
(Selected Frequencies)
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9 (0.0389,0.1024) (0 .0.0901) (0 ,0.2428)
(0 ,0.0901) (0.2122,0.5580) (0 ,0.6156)
(0 ,O.2428) (0 ,0.6186) (2.0467,5.3821)

L1=IT/2

(0.0789 ,0. 1995) (0 ,O.0659) (0 .0.0628)

I (0 ,O.0659) (0.0938 ,0.2372) (0 ,0.2273)
(0 ,O.0628 ) (0 ,0.2273) (0e0713 ,O.1804)

(1.0185,2.6783) (0 ,0.2253) (0 .0.1521)
(0 ,Q.2253) (0.0738 ,0.1941) (0 ,O.0487)
(0 ,O.1521) (0 ,0.048 7) (0.0297 ,0.0 782)

The diagonal elements are for actual values of the power
spectrum, while off diagram elements are for the amplitude
of the cross spectrum. $

+ 

Figure 4. 95 Percent Confidence Intervals, Simulation III

H

Vt-

V ~~~~ -~~~~~ VV.V~~~ 
-
- ~~~~ 

V V~~~~5 — -- - V V



--V -5 - —--~~ V --V -~~~~

IV. Conclusions and Recommendations

• We took P. R. Krishnaiah and F. J. Schuurmarin’s theo-

- 

retical work and showed the development of the theory and

applied it to some simulations. We cannot make definitive

conclusions based on the simulations because the sample size

was too small. We did see that some problems exist at the
-

- 
frequencies zero and w which cannot be explained by theory.

A larger sample size is needed to make quantitative judge-

ments on that aspect.
~~

* - • . • .  - • - V - . •  4 • - V~~ -

Based on the development of the theory there is rio

reason that this technique will riot work for a r-variate

vector time series. We did not restrict the theory to the

three variable vector-valued time series that we did our

simulations on, In the same vein, there is no reason that

this technique will not work for processes other than the

first order autoregressive process we simulated.

The computer program we used is not attached to this
+ 

thesis because there are several Fast Fourier Transformation

programs available that can be used to calculate the spec-

tral density matrix. When applying this technique to AFTECs

problem or any similar problem, analysts can use the canned

programs to set up their spectral density matrix and easily

multiply them by the degrees of freedom and calculate the

test statistics, Eqs (54) through (57).
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An important consideration that AFTEC or other users of

this technique should be aware of is the selection of the

number of frequencies tested. They should select enough

frequencies far enough apart so that the probability that

all frequencies pass is small. This causes the probability

of a type II error to be small. The analyst controls the

probability of a type I error. The frequencies looked at

should be harmonics or every other harmonic or any other

consistent scheme. They have to balance their desire for

accuracy with the cost of examining at a greater number of

frequencies. It is a common problem in testing to have to

balance the probability of a type I error with the probability

- 

- 

of a type II error.

Another area that they need to understand is model

building in time series. They should be able to take the

data and see what kind of process and what the parameters

of that process are using least sums of squares or maximum

liklthood estimators. This ts especially important when

they get data that rejects at several frequencies while

passing at several frequencies as our simulation II did.

There are some areas where further work is needed, using
this thesis as the starting point. The first is the problem

with frequencies zero and w. An investigation into why these

two frequencies exhibited the behavior we saw is needed. It
+ 

may be just that our sample size was too small; however WE’-

cannot definitely say that is true.
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A comparison of Tables II and VIII with Tables I and VII

and Table III with Table IX, indicates that the F test is

more sensitive than the Beta test. Again, our small sample

size precludes us from making a definitive statement and it

should be investigated. The problem could be in the corn-
- puter rounding on cos and sin for these frequencies.

AFTEC and other users need to consider the two alterna-

tive decision rules we looked at:

(i) all pass

(ii) Binomial distribution, m or more out of n have

to fail to reject.

+ It would seem that (i) would !~ ve a smaller probability of

type II error. Further investigation of simultaneous tests

- 
to see what happens to the probability of type LI error would

be fruitful, The analysts will have to select the decision

rule they are most comfortable with and build the test

around it.

I ,
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